
Developer’s guide

Nadir SOUALEM – INRIA

Contents

The developer’s guide is a practical introduction to developing applications for
H2OLAB.

1 Prerequisite Knowledge

To develop in H2OLAB it is at least required to have a basic understanding of
the following points:

• Object Oriented Programming in C++

• MPI - The Message Passing Interface

• XML - File parameters

• Batch Programming (Bash, Windows Command)

• CMake 2.6 or higher for Linux Users

• Microsoft Visual Studio 2005 or higher for Windows Users

• Revision control system Subversion: update, commit, merge and branch-
ing

• Source code documentation generator tool Doxygen

• Latex

2 Communication

If you have any questions or problems with H2OLAB softwares, you can use the
mailing list hydrolab-devel hydrolab-devel@lists.gforge.inria.fr. You
may subscribe and unsubscribe from this mailing lists using your Gforge-account.

3 Coding Rules

3.1 Documentation

Header files must be completely documented. This means every class, method,
and data member must have comments. Header files describe the interfaces of
the system, and as such, should contain all the information a developer needs

1

https://gforge.inria.fr/mail/?group_id=552

3.1 Documentation H2OLAB Documentation

to use/understand the interface. Code must be documented according Doxygen
syntax.
Rule 1 – To document a block of code, the syntax we use is:

/**

* Documentation here.

*/

Rule 2 – All functions must be documented

/**

* @brief Integration of f in [a,b] using Trapezoid Method

* @param f is a function of one variable

* @param a is the lower bound

* @param b is the upper bound

* @return Integral of f(x) in [a,b]

*/

double integration(double (*f)(double), double a, double b);

Rule 3 – All classes must be documented

/**

* @brief Short description of test class

*

* Long description of test class

*/

class Test

Rule 4 – All Members must be documented

int var; //!< Detailed description after the member

Rule 5 – All Enum Must be documented

/**

* @brief Short description of an enum

*

* More detailed enum description

*/

enum TEnum {

TVal1, //!< Enum value TVal1 description.

TVal2, //!< Enum value TVal2 description.

TVal3 //!< Enum value TVal3 description.

};

Rule 6 – Use Latex to document models or PDE if you can with \f$ delimiters

* @return Integral of f(x) in [a,b] :

* \f$ \displaystyle\int_{a}^b f(x)dx=(b-a)\frac{f(a)+f(b)}{2} \f$

gives:

Integral of f(x) in [a, b] :

∫ b

a

f(x)dx = (b− a)
f(a) + f(b)

2
To display formulas that are centered on a separate line, delimiters are \f[and
\f]. An example:

2

3.2 Development H2OLAB Documentation

* @return Integral of f(x) in [a,b]

* \f[

* \int_{a}^b f(x)dx=(b-a)\frac{f(a)+f(b)}{2}

* \f]

gives:
Integral of f(x) in [a, b]∫ b

a

f(x)dx = (b− a)
f(a) + f(b)

2

3.2 Development

Rule 7 – Use the following naming conventions

1. All class names start with an upper case letter.

2. All function names start with a lower case letter.

Rule 8 – Protect header files from multiple inclusion with preprocessing com-
mand #ifndef. Header files such MyClass.h must be defined by:

#ifndef MYCLASS_h

#define MYCLASS_h

// Code here

#endif

Rule 9 – Do not place using namespace directive in header files.
For example, let’s use boost’s gregorian date library. In my class I want to
return dates and use dates in methods. So my header file looks like:

#include <boost/date_time/gregorian/gregorian.hpp>

class Calendar

{

public:

boost::gregorian::date GetEventDate(void) const;

void SetEventDate(boost::gregorian::date dateOfTheEvent);

};

Clearly these are long names and you are tempted to put at the top of you class
file:

using namespace boost::gregorian;

This would mean you could just use date instead of boost::gregorian::date.
That’s nice. But you can’t do that. If you do you are making the decision for
everyone who uses your class as well. They may have a conflict, ”date” is a very
common name afterall. So, don’t use it in you header file, but you can use it in
your source file. Because it’s your source file you can make the decision to use
short names.
Rule 10 – Do not use define to declare constant values, use const

3

3.2 Development H2OLAB Documentation

// Incorrect

#define EPS_POINT_OUT_BORDER 1e-10

// Correct

const double EPS_POINT_OUT_BORDER = 1e-10;

Rule 11 – Prefer initialization to assignment in constructors

class MyClass

{

private:

string x_;

string y_;

public:

MyClass(){x_ = "Project" ; y_ = "H2OLAB" ;}

};

Initialize using initializer list

MyClass():x_("Project"), y_("H2OLAB") {}

or in the usual way:

MyClass(){x_("Project") ; y_("H2OLAB") ;}

Rule 12 – Prefer initialization to assignment

// Assignement

MyClass obj; // call default constructor MyClass()

obj = value; // call operator =

// Initialization

MyClass obj(value); // call copy constructor

Rule 13 – Minimize compilation dependencies between files by using forward
declaration
Reduce header file dependency by effective use of forward declarations in header
files. Sometimes to reduce header file dependency you might have to change
member variables from values to pointers. Every time you use a #include

make sure that you have an extremely good reason to do so.
Example:

class Simulation;

class run_global_results;

class Launcher{

protected:

/** Simulation : abstract-based pointer.*/

Simulation *simulation;

/** Run results : abstract-based pointer.*/

Run_Global_Results *run_global_results;

...

};

4

3.3 File parameters H2OLAB Documentation

By defining pointer and not object themselves, compilers know how much mem-
ory they can allocate (size of a pointer !!!).
Rule 14 – Use const whenever possible C++ provides powerful support for

const methods and fields. const should be used in the following cases:

• Methods that do not change the value of any variable in the class should
be declared const methods

• If a function is supposed to just read information from a class, pass a const
pointer or reference to this function

Rule 15 – Match case BC Description.h is not BC description.h
Rule 16 – Use / separator for include paths

#include "Porous_Basis\Grid_Visualisation.h" //KO

#include "Porous_Basis/Grid_Visualisation.h" //OK

Rule 17 – Template classes must be in headers
Rule 18 – When you use template argument list prefer > > to >>

std::map<T,std::vector<double>> A; //KO

std::map<T,std::vector<double> > A; //OK

Rule 19 – Declare template iterators as typename

std::map<T,double>::iterator it=M.begin(); //KO

typename std::map<T,double>::iterator it=M.begin(); //OK

3.3 File parameters

Rule 20 – Default parameters modifications must be discussed
Rule 21 – All parameters must be documented
Rule 22 – Possible values have the format value::value description;...

4 Subversion

4.1 Connection

Rule 23 – Prefer svn+ssh to Webdav
Network protocol svn+ssh is stateful and noticeably faster than WebDAV.
For every day usage, it is highly recommended to use svn+ssh.

4.2 Branching

Rule 24 – New branches must be in svn repository branches
Rule 25 – Branching must not exceed 3 months
Rule 26 – Bring changes from the trunk over to your branch as often as possible
Rule 27 – Remember range revisions when you bring changes from trunk

5

H2OLAB Documentation

5 Testing

5.1 Non Regression tests – NRT

Rule 28 – New launchers must be tested. Add a new launcher MyLauncher
and a new test MyTest in
$HYDROLAB ROOT/svn/non regression tests/short/MyLauncher/Mytest
and
$HYDROLAB ROOT/svn/non regression tests/long/MyLauncher/Mytest

1. Add xml parameters files which allow test generation and validation:
generation of test xml files .xml,validation parameters.xml

2. Add parameters and reference results directories

Rule 29 – Add or Update tests when you add new features
Rule 30 – Short NRT must not exceed 2 minutes per Launcher
Rule 31 – Short test must use 32-bits application for Windows Users
Rule 32 – Long NRT must not exceed 1 hour per Launcher
Rule 33 – Long test must use 64-bits application for Windows Users
Rule 34 – Non-Regression tests must be documented in
$HYDROLAB ROOT/svn/benchmark book/NRT/Launcher/description.tex

6 Documentation

Rule 35 – Software must be documented in
$HYDROLAB ROOT/svn/docbeta/softs/description/Launcher/Launcher.tex

6

